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Understanding materials in extreme 

conditions via spectroscopy

Ken O’Neal
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Spectroscopy

• Study of light-matter interaction

– Light can be absorbed, transmitted, reflected, refracted, emitted, etc.

• Probes a wide variety of properties depending on wavelength of light

• Can be static or dynamic
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Outline

• FTIR and Raman

– Pressure-induced dimensionality crossover in Cu-3Cl(pyd)

– Local structure changes in Ni3TeO6 under pressure

– Size-dependent vibronic coupling in CuGeO3 nanorods

• Ultrafast spectroscopy

– Carrier dynamics of EuCd2As2

• Summary and Acknowledgements
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Fourier Transform Infrared Spectroscopy

• Source beam is split into two

– One goes to fixed mirror; other to moving mirror

– Switches between destructive and constructive 

interference

• Recombined beam is passed to sample

– Can do transmittance (absorbance) or reflectance

• Resulting interferogram is Fourier transformed to get 

a spectrum in the frequency domain

• Can be used to measure over broad spectral ranges
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FTIR instruments

• Different configurations for different types of measurements

– Varying spectral ranges and resolution, spatial resolution, etc.

• Can measure different sample forms (liquid, crystalline, powders)

• Can couple in cryostats for temperature control
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Raman scattering

• Similar spectral ranges but different principle than FTIR

• Excite with one laser wavelength

– Choice can affect spectra if it is near a resonance

• Measure in relative frequency (with laser line being 0 cm-1)

– Difficult to get to very low frequencies

• Can integrate over time to overcome low signal issues

– Makes intensity relative



7Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Measuring in extreme conditions

• Temperature (4.2 to 300 K)

– Open-flow helium cryostat

• Magnetic field (done at NHMFL)

– 35 T static fields

– Up to 60 T pulsed fields

• Pressure (ambient to 20 GPa)

– Diamond anvil cell

• Combine parameters to map out phase space
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Analyzing spectra

• Fit spectra with standard functions

• Extract peak information depending 

on scientific interest

– Center, fullwidth at half max, area

• Tracking as function of tuning 

parameter can reveal transitions

• Can be used to quantify coupling 

constants, fit to models, etc.
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CuF2(H2O)2(3-chloropyridine)

• Two-dimensional molecule-based magnet

– Magnetic exchange within Cu-F-H2O plane

• Magnetic crossover from AFM to FM at 0.8 GPa

• Complex spectra – many peaks in both IR and Raman
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What do the high pressure spectra show?
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What do we learn?
• Combined IR, Raman, and 

calculations to get full picture

• New hydrogen bond formed under 
pressure with Cl

• New magnetic exchange pathway

– Material goes from 2D to 3D

– Magnetism changes from AFM to FM

• New structural transition discovered 
near 5.5 GPa

Ambient                                                                                  P > 0.8 GPa

b a

c

P
FMAFM

O’Neal, Sci. Rep. 4, 6054 (2014)
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Multiferroic Ni3TeO6

• Ferroelectric and antiferromagnetic in 

ground state

• Temperature-magnetic field phase 

diagram known

• No previous pressure studies

• Structure is more complex than it at 

first appears

– Three unique NiO6 configurations

– Empty O6 cages throughout

Ni1

Ni2

Ni3
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High pressure spectra

• Measured both infrared and Raman

• Can assign all modes based on calculations and previous work
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Subtle changes in spectra

• Tracking mode frequencies reveals reduced compressibility above 4 GPa

– Slopes for several modes decrease here

• Supported by calculations of spectrum using structure under pressure

• Why only some modes?
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What causes the slope change?

• Use calculated structures to look for clues

• Bond lengths all change linearly – nothing to learn

• Bond angles also change linearly – except for one!
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What do we learn?

• Used detailed analysis to reveal cause of 

slope change

• Vibrations of atoms near the empty pocket 

all displayed the slope change

• Pocket compresses easily up to 4 GPa, 

then stiffens as atoms get closer

• Changes to magnetic exchange in line with 

preliminary measurements
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O’Neal, Phys. Rev. B 98, 184101 (2018)
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CuGeO3 nanorods

• Spin-Peierls transition at low temperature

• Bulk has been studied for over 20 years

• Can now grow nanorods – new way to tune the properties

– Control of nanorod length, keeping diameter similar

– Spin-Peierls transition suppressed in shortest rods
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Vibronic coupling

• d-d electronic transition is formally forbidden
– Activated by odd parity phonon (IR-active)

• Temperature dependent oscillator strength can be modeled

– Can indicate which phonon(s) are activating the transition
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Vibronic coupling model limitations

• Typical vibronic coupling model did not 

work for nanorods

• Added a temperature-independent 

constant, fx

• Slight improvement in fit for bulk

– Significant difference in phonon frequency

• Needed a physical basis for constant

– Defects and edge effects

– Distortions in crystal structure
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What do we learn?

• New model worked for all nanorods

• Could track size dependence of coupled 

phonon frequency

• Crossover in most important phonon 

below rod length of 500 nm

– Blue color comes from different origin

• New model can now apply to all 

nanomaterials

O’Neal, Phys. Rev. B 96, 075437 (2017)
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Outline

• FTIR and Raman

– Pressure-induced dimensionality crossover in Cu-3Cl(pyd)

– Local structure changes in Ni3TeO6 under pressure

– Size-dependent vibronic coupling in CuGeO3 nanorods

• Ultrafast spectroscopy

– Carrier dynamics of EuCd2As2

• Summary and Acknowledgements
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Ultrafast spectroscopy

• Laser pulse excites material

• Second, weaker pulse measures changes

• Varying the path length of the second pulse controls its arrival time

– Allows for ultrafast measurements even with a slow detector

• Spectral selectivity, high sensitivity,

small focal size, femtosecond timescale



23Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

EuCd2As2 – magnetic Weyl semimetal(?)

• Magnetic derivative of Cd2As3

• Growth conditions affect magnetism

– (FM) Tc = 30 K or (AFM) TN = 9 K

• Spins forced to align out of plane leads to Weyl 

semimetal with one pair of nodes

• Other measurements have been inconclusive
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Across the magnetic ordering transition

• Measure as function of temperature

– Observe changes across TC = 30 K

• Overall changes appear gradual

– Magnitude rises then falls

– Timescale follows similar trend

• Need to fit data to learn more
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Fitting the data

• Fit data at each temperature to 

extract parameters

• Model is complex

– Rise from laser pulsewidth

– Slow rise process

– Two decay processes

• Electron-phonon relaxation

• Spin-phonon relaxation

• Follow parameters as function of 

temperature to look for changes 

across TC
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How does magnetism affect dynamics?

• Subtle signs of spin-charge coupling across TC

• Much stronger changes near 70 K

– Attributed to short-range, in-plane magnetic fluctuations
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Summary

• Spectroscopy is powerful and non-destructive technique that can be used to 

study a wide range of materials

– Can probe phase transitions with temperature, magnetic field, and pressure

• Detailed data analysis is key to deep understanding

– Hydrogen bond formation in CuF2(H2O)2(3-chloropyridine)

– Local structure changes in Ni3TeO6

– Size-dependent vibronic coupling in CuGeO3 nanorods

– Ultrafast carrier dynamics in EuCd2As2
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